MASSIVE SAVINGS JUST FOR YOU!
VIEW DEALS

A Novel Membrane Process For Autotrophic Denitrification



This is a research paper discussing the use of autotrophic hydrogen oxidizing bacteria for denitrification in wastewater treatment. The paper discusses the use of microporous hollow fiber membranes to supply hydrogen gas to the bacteria, and the results of laboratory and bench scale studies on the system. It also discusses the feasibility of using the system in larger-scale wastewater treatment pl... more details
Key Features:
  • Discusses the use of autotrophic hydrogen oxidizing bacteria for denitrification in wastewater treatment
  • Discusses the use of microporous hollow fiber membranes to supply hydrogen gas to the bacteria
  • Discusses the results of laboratory and bench scale studies on the system


R3 177.00 from Loot.co.za

price history Price history

   BP = Best Price   HP = Highest Price

Current Price: R3 177.00

loading...

tagged products icon   Similarly Tagged Products

Description
This is a research paper discussing the use of autotrophic hydrogen oxidizing bacteria for denitrification in wastewater treatment. The paper discusses the use of microporous hollow fiber membranes to supply hydrogen gas to the bacteria, and the results of laboratory and bench scale studies on the system. It also discusses the feasibility of using the system in larger-scale wastewater treatment plants.

Biological denitrification by heterotrophic bacteria is common in the wastewater industry in the U.S. and in drinking water processing in Europe. To facilitate heterotrophic denitrification, organic compounds such as methanol, ethanol and acetic acid are added to provide a carbon source for the bacteria. The resulting organic carbon residual may create problems with chlorination. The addition of these carbon compounds is expensive and results in added sludge production. This study focused on the use of autotrophic hydrogen oxidizing bacteria for denitrification. The method transfers hydrogen gas to solution via microporous hollow fiber membranes. Typically, gases are supplied to a system using conventional bubble diffusers. The conventional bubble aeration system has a low gas transfer efficiency, and, as a result, the cost of dissolving the required amount of gas is very high. In this study, microporous hollow fiber membranes were employed to supply hydrogen gas to hydrogen oxidizing autotrophic bacteria. Laboratory scale membrane modules were constructed and mass transfer studies were carried out to develop the design correlations for hydrogen gas transfer. A mixed culture was obtained and acclimated for batch denitrification studies. Both Sodium carbonate and carbon dioxide were used to deliver inorganic carbon. Bench scale continuous flow biofilm reactors containing plastic media were operated to remove nitrate from water. The required hydrogen gas was supplied at a constant rate via gas transfer modules, containing sealed end microporous hollow fiber membranes. The reactors were optimized for removal of nitrate and nitrite by varying the recycle ratios and hydraulic detention time. Experimental results indicated the presence of hydrogen oxidizing denitrifiers in wastewater sludge. Adequate pH control was possible and the pH averaged around 6.95. Gas transfer studies indicated that hydrogen transfer was primarily controlled by liquid film diffusion. Hydrogen gas was successfully delivered to the reactor via the hollow fiber membrane gas transfer module. Nitrate and hydrogen concentration measurements indicated that the system did not experience hydrogen limitations at detention times of 3.25 hours or greater. The use of hollow fiber membrane module appears to be a viable technology for transferring hydrogen gas to water. The research results in this report provide valuable information for pilot and full-scale studies for the water/wastewater community focusing on membrane processes for autotrophic denitrification.
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.