Description
Metal clusters, an intermediate state between molecules and the extended solid, show peculiar bonding and reactivity patterns. Their significance is critical to many areas, including air pollution, interstellar matter, clay minerals, photography, catalysis, quantum dots, and virus crystals. In Aromaticity and Metal Clusters, dozens of international experts explore not only the basic aspects of aromaticity, but also the structures, properties, reactivity, stability, and other consequences of the aromaticity of a variety of metal clusters. Although the concept of aromaticity has been known for nearly two centuries, there is no way to measure it experimentally and no theoretical formula to calculate it. In order to gain insight into its exact nature, the authors of this volume examine various indirect characteristics such as geometrical, electronic, magnetic, thermodynamic, and reactivity considerations. The book begins by discussing the evolution of aromaticity from benzene to atomic clusters. Next, more specialized chapters focus on areas of significant interest. Topics discussed include: * Computational studies on molecules with unusual aromaticity * Electronic shells and magnetism in small metal clusters * A density functional investigation on the structures, energetics, and properties of sodium clusters through electrostatic guidelines and molecular tailoring * The correlation between electron delocalization and ring currents in all metallic aromatic compounds * Phenomenological shell model and aromaticity in metal clusters * Rationalizing the aromaticity indexes used to describe the aromatic behavior of metal clusters *5f orbital successive aromatic and antiaromatic zones in triangular uranium cluster chemistry This collection of diverse contributions, composed of the work of scientists worldwide, is destined to not only answer puzzling questions about the nature of aromaticity, but also to provoke further inquiry in the minds of researchers.