Description
The normal or bell curve distribution is far more common in statistics textbooks than it is in real factories, where processes follow non-normal and often highly skewed distributions. Statistical Process Control for Real-World Applications shows how to handle non-normal applications scientifically and explain the methodology to suppliers and customers. The book exposes the pitfalls of assuming normality for all processes, describes how to test the normality assumption, and illustrates when non-normal distributions are likely to apply. It demonstrates how to handle uncooperative real-world processes that do not follow textbook assumptions. The text explains how to set realistic control limits and calculate meaningful process capability indices for non-normal applications. The book also addresses multivariate systems, nested variation sources, and process performance indices for non-normal distributions. The book includes examples from Minitab, StatGraphics Centurion, and MathCAD and covers how to use spreadsheets to give workers a visual signal when an out of control condition is present. The included user disk provides Visual Basic for Applications functions to make tasks such as distribution fitting and tests for goodness of fit as routine as possible. The book shows you how to set up meaningful control charts and report process performance indices that actually reflect the process' ability to deliver quality. Review: With this book, the author provides a useful contribution to the literature for dealing with methods for describing the quality of a nonnormal process through the use of appropriate control charts and/or process performance indices. ... I found this book interesting and valuable in discussing topics related to SPC that are not found in traditional textbooks on the subject. In order to get the same level of information as provided in this book, one would have to search for numerous journal articles for details and applications. -Connie M. Borror, The American Statistician, November 2011 ... a useful addition to the library of any industrial statistician, process engineer, or quality engineer engaged in improving processes. It represents material that is not typically covered in conventional books on statistical process control. In particular, with its focus on nonnormal distributions, this text provides a measure of reality that many quality and manufacturing professionals have known for years-that not all process distributions follow the normal distribution. In that respect, this book is a refreshing addition to the literature and I highly recommend it. -Dean Neubauer, Journal of Quality Technology, Vol. 43, No. 4, October 2011